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An algorithm is proposed for computing velocity fields in channels on the basis of 
the joint application of finite-elements and finite-difference methods by using 
an exponential approximation of the desired functions in the elements. 

In recent years the finite elements method (FEM) has become one of the most extensively 
utilized methods of numerical analysis for different physical processes. Its domain of ap- 
plication has been extended significantly from mechanics and heat conduction problems to 
complex heat transfer and hydrodynamics problems. New algorithms and methods for its realiza- 
tion have appeared, a modern mathematical support has been created to assure effective real- 
ization of the method on electronic computers [i, 2]. At the same time a traditional poly- 
nomial approximation of the desired functions in the elements is used in the majority of cases 
of FEM application to solve hydrodynamics problems together with the effective principles of 
constructing algorithms of the solution (penalty function method [3, 4], combined application 
of FEM and the method of characteristics [4, 5], etc.), which results in complexities ana- 
logous to the case of central-difference approximations of convective terms in transport equa- 
tions by the finite-difference method (necessity of diminishing the mesh Reynolds numbers to 
obtain a stable solution, etc.). 

An important step in the development of the method in application to two-dimensional 
problems of convective transport was the paper [6] where a new formulation was proposed for 
the method on the basis of the concept of a control volume as well as the approximation of 
functions being constructed in particular solutions of the convective diffusion part of the 
original equation. This permitted approximation of the properties of the finite-element 
scheme to the properties of exponential difference schemes. 

However, as the practice of applying such an approach to the solution of hydrodynamics 
problems in domains with an abrupt change in geometry or with large source terms in the equa- 
tions (problems with free convection taken into account for large Gr numbers, say) showed, it 
is possible to obtain non-physical solutions characterized by velocity and pressure fluctua- 
tions. The reason for this latter is source terms in the transport equations are not taken 
into account in the approximation [6] and a linear approximation for the pressure in the ele- 
ments is used simultaneously. 

An algorithm is proposed in this paper for the solution of three-dimensional problems of 
hydrodynamics by using FEM in the control volume formulation with the approximation of func- 
tions in the elements that takes account of the source terms of the motion equations. Let us 
elucidate the fundamental situations of this algorithm for the case of parabolized laminar 
viscous incompressible fluid flow in a channel of arbitrary section. The appropriate boundary 
value problem in dimensionless form is 
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Fig. I. Construction of control volumes on a 
triangular finite-element mesh. 

with the single-valuedness conditions 

{ U,k=o = U,,, (X~, X~, X3); Pk=o = P~(X1, X~, X3); (3 )  

U~lx,=0 = U~,(X1, X~, O; U~lx,,x~G = O. 

Here P is represented in the form of the sum of functions p(Xz, X2, t), the pressure in the 
plane of the channel section, and p(X3, t), the pressure averaged over the channel section [7]. 

To solve the problem (I)-(3), we use finite-element and finite-difference methods joint- 
ly, as in [8]. Since the original system of equations is nonlinear, then the algorithm for 
its solution will be iterative in nature. It is here constructed so that the continuity equa- 
tion is satisfied for each iteration and the cofactors Uj (j = i, 2, 3) in the convective 
terms are taken from the preceding iteration. 

Executing discretization of the domain D by triangular elements and constructing control 
volumes on their basis (Fig. I), we write the system (I) for an individual element by con- 
sidering that U~ (j = i, 2, 3) in the convective terms and F i equal the mean values over the 
element (subscript "0") 

OUi OU~ 1 
O---i- + U ~  ' , - , 2 ~  02Ui OP aXj Re J=, -~i OXi +Foi, i= 1, 2 , 3 .  (4) 

Here the subscripts for the number of the iteration (because of the remark made above) and 
the number of the element are omitted. 

Let us consider the pressure P on an element to vary linearly, then we determine deriv- 
atives 8P/SX i = Pxi = const also at the center of mass of the triangular element. To 
construct an approximation of the functions Uj in a finite element we consider the equation 

2 
(5) 

The functions 

1 
~j = (exp[ReUoj(Xj--:Xoj)]--l), ] =  1, 2; 

ReUoj 

1 

2 

will be particular solutions of the homogeneous equation:(5), and also e = const. Let us 
represent the general solution of (5) in the form 

U~ = Q0~# 3c ~ ~- ~z -~ y~2, (6 )  

where  ~, 13, ~ a r e  c o n s i d e r e d  f u n c t i o n s  o f  t h e  v a r i a b l e s  X3, t ;  Qoi = - P x i  + F o i ;  ~ i s  a p a r -  
t i c u l a r  solution of (5) for Q0i = I. 
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The functions 

2 

y _  1 Rer Z- -  1 ~'~ Uoj(Xj--Xoj), 
2 Veto 

/=1 

say, can be taken as U0j (j = i, 2) however, it is expedient to use the former since as 
U 0 �9 (j = i, 2) tends to zero (W 0 § O) it tends to one of the particular solutions of the J 
heat conduction equation with a single source, i.e., reflects the physics of the problem. 
The function Z will have no finite limit. Let us also note that in contrast to [6], a locally 
one-dimensional exponential approximation of the solution is used here. Use of the functions 

and @ (see [6]) in the construction of (6) induces a character of linear behavior of the 
velocity vector components. Upon selection of Sj (j = i, 2) as base results of the numerical 
experiments performed for the solution of different problems of hydrodynamics with the use 
of the approximation from [6] are taken into account also. 

The coefficients ~, 8, 7 in (6) are found for each element as in the case of the linear 
approximation of the solution, from the condition that U i equal the nodal values of the de- 
sired quantities. 

We now turn to examination of a sequence of calculations. Let us represent the func- 
tions U i (i = I, 2, 3), p, a~/ax 3 in the form [8] 

U~=U;q-U;: ( i =  1, 2, 3); p = p ' + p " ;  

oy Op ay' 
a x .  - + - U X F  ' 

( 7 )  

where p', 8p'/SX 3 are a given (from the preceding iteration, say) pressure distribution and 
its gradient to which the velocity distributions Ui (i = i, 2, 3) correspond. Using (6), 
integrating over the control volumes [6] and summing over all elements, we obtain a system 
of partial differential equations in the time and the coordinate X 3 with nonsymmetric tape 

' (i = i, 2, 3) and which we solve by using an implic- matrices to determine the nodal values U i 
it difference scheme [8] by considering the velocity distribution at the preceding time and 
in the uspstream section already known. Having determined the nodal unknowns Ui (i = i, 2, 
3), we correct the solution. We find the correction 8p"/SX 3 from constancy of the mass flow 
through the channel section at a given time, as in [8]. We find the desired pressure gradient 
from (7) and determine U 3 corresponding to 8p/SX3, from the system (i). 

To avoid the procedure of inverting the matrix and in order to save electronic computer 
storage, the following iteration scheme for finding the correction p" is proposed in contrast 
to the algorithm from [8]. We represent p" as the sum p" = p* + ~p and we write the equation 

"(i=l, 2) for U i 

u;' au;: u; 1 ow; 0p" 

i=i i=i 

" in an element in the form Let us represent U i 

N "* -%iN~U~ + N~U~ (i 1, 2), ,,.... = ( 9 )  

where  Nj ( j  = s m, n)  a r e  b a s i s  f u n c t i o n s  o f  t h e  e l e m e n t  o b t a i n e d  by u s i n g  (6)  f o r  Px i  = 8p*/  
8Xi; s m, n a r e  l o c a l  number o f  t h e  nodes  in  t h e  e l e m e n t ,  6U~ a r e  p a r t i c u l a r  s o l u t i o n s  o f  an 

element analog of the system (8) of the form ~6U[--O(6p)/(OX~ ] _~_i AX3 'U~ 1 ; and U~ is a solution 

of (8) corresponding to the pressure p*. To determine 6p we substitute the approximation (9) 
into the continuity equation, we obtain the Poisson element equation for the pressure 6p: 

2 

" AX3 i=i 

a(u; + ur) + ] 
7- f f  j 
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Fig. 2. Distribution of the velocity components 
U i (i = I, 2) over the boundary of a translation 
element of a cascade of rods: i) X 3 = 0.i, 2) 
X 3 = 0.2 (absolute values of U I and U 2 for X 3 = 0.2 
enlarged ten-fold) 

Fig. 3. Pressure isolines. Solid lines for the section X 3 
and dashes for 0.2. 

Fig. 4. Isolines of the velocity component U~. 

=0.I 

Summing (I0) over all elements results in a system of algebraic equations with a sym- 
metric tape matrix. Since the boundary condition for 6p will be 8(6p)/SnlG = 0, then it is 
necessary to give the pressure in a certain point of the domain D when solving this system. 

Determining the nodal values of 6p we find the new representation of p* as p~ + i = P~ + 

6p (pC = 0 for k = 0, k is the number of the iteration in the pressure) and the computation 
is continued until the condition maxl6pl ! ep is satisfied. It is clear that as 6p + 0 p" 

D 
, , " (i -= i 2) in such manner, we determine p" U* ~ p" U* ~ U", div U + 0. Finding p" and U i 

the desired field Ui, p by means of (7). 

The general iteration process for the channel computation section is continued until 
given accuracy of the results on the velocity field is achieved. 

The algorithm described above with the locally one-dimensional exponential approximation 
of the velocity field and with the source terms of the transport equation taken into account 
is realized in the form of a set of programs of the solution on an electronic computer for 
nonstationary three-dimensional hydrodynamics problems in channels of complex section. It is 
approved by the solution of different test problems (fluid flow in a rectangular channel, say) 
and yielded better agreement (up to 3%) of the computed results with the known stationary 
solutions [7]. 

A stationary problem to determine the velocity field (Re = 50) in the beginning hydro- 
dynamic section was solved in a cascade of rods with a square component for the cascade step 
s = b/r 0 = I, 2. The velocity profile at the entrance to the channel was given homogeneous, 
and a translation element of the cascade was considered as the domain D (see Fig. 2). The 
boundary conditions for the velocity components were given in the form 
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UiIx~= 0 = O, Us[x~= 0 = I ( i - - - - | ,  2; X1, X2ED); 

U~lx,,x,eo,- OU~= I --0 ( i=l ,  2, 3; X3>O); 
On xl,x~eG, 

OUi I =0  (i=2,  3; Xs>O); U~lx,,x~ea~- On x,,x,eo~ 

U2[x~,x,e~,= OUion_ x,,x~ea, ~-0 ( i~1,  3; Xs>O). 

Distributions of the velocity vector components U i (i = i, 2, 3) over the sweep of the 
computed domain boundary G2UGsUG 4 are represented in Fig. 2. It is seen from the figure that 
an intensive efflux of fluid from the rod surface is observed in the section X S = xJ(r0Re) = 
0.i in the domain of the maximum of the component U S caused by reforming of the velocity pro- 
file near the entrance section. The flow intensity in the plane D is reduced considerably in 
the second section. As computations showed, profile formation practically terminated in the 
section X S = 0.4 whose coordinate could be considered the length of the beginning hydrodynamic 
section in the cascade of rods under consideration (L = 20r0). 

Isolines of the field p in the section X s = 0.I, X S = 0.2 and of the velocity component 
U S in the section X S = 0.5 (stream stabilization section), constructed on an electronic com- 
puter from computed data, are represented in Figs. 3 and 4 to illustrate the flow pattern. 

To confirm the reliability of the results obtained, the change in the quantity_AU S equal 
to the ratio of the computed values of U s in the section X S = 0.5 to the values of U s cal- 
culated by an approximate analytic solution of an analogous problem for the stabilized flow 
case [9] is shown in Fig. 2. It follows from the figure that the absolute values of AU S for 
practically the whole section G is almost i. The maximal difference between U s and 0 S (-8%) 
is observed in the region of their maximal values. However, it is necessary to note here that 
four terms of the series are taken into account in the analytic solution [9] and the values 
of U s obtained on its basis in the domain of G 2 and G S intersection are somewhat exaggerated. 
Moreover, for X S = 0.5 the value of the grouping TRee, obtained equal to 80.2, is computed 
and differs by 3.2% from that presented in [9]. 

In conclusion, let us note that the computations were performed on a mesh of 1372 ele- 
ments containing 750 nodes. 

NOTATION 

t = ~w0/r0, time; w 0 mean fluid flow velocity; X i = xi/r0; r0, characteristic dimension 
of the channel section domain D; Re = w0r0/~; v, kinematic viscosity; P = P/(pw~); p, density; 
F i, mass force component in the X i, axis direction; G, boundary of the domain D; n~ external 
normal to the boundary G; At, AX 3, steps in the difference mesh in the time and the coordinate 
Xs, respectively; Ep, given accuracy of the pressure field calculations; ~, friction drag 
coefficient, and Re e = w0de/v; d e = 2r014s2/~ - i], equivalent diameter of the cascade. 
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